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Some theoretical results concerning the displacement 
of a viscous oil by a hot fluid in a porous medium 

By F. J. FAYERS* 
California Research Corporation, La Habra, California 

(Received 27 September 1961 and in revised form 5 January 1962) 

Two simultaneous first-order non-linear equations are derived to give a ‘high- 
flow-rate’ model for the displacement of oil by hot water in a porous medium. 
The solution of these equations is analysed by the method of characteristics 
and it is shown that in problems for which thermal capacity dependence on tem- 
perature is neglected, the solution will have the properties of a simple wave. The 
simple wave behaviour gives a rapid method for solving practical systems. When 
temperature dependence is included in the thermal capacities, it  is found that 
a simultaneous shock in temperature and saturation develops, but the solution 
will usually approximate quantitatively the simple wave result. Decoupling 
the equations by using an average saturation in the heat transport equation 
gives results in reasonable agreement with the coupled case. 

Introduction 
Present techniques for the recovery of a highly viscous crude from a petroleum 

reservoir, using the solution-gas-drive or natural-water-drive process provided 
by nature, yield remarkably small percentage recoveries of the oil in place 
(sometimes as small as a few per cent). The forces provided by nature are often 
supplemented by the injection of water in suitably located wells, but apart from 
maintaining the pressure within an oil field, the injected water is at best an 
inefficient driving mechanism. When heat is introduced into the reservoir, the 
increase in temperature reduces theviscosity of the crude, and the efficiency of the 
displacement by a driving fluid is improved. Many of the present attempts to 
utilize heat in the reservoir are focused on the use of water, both as a convector 
of heat, and as the displacing fluid, Two attractive methods for heating the water 
are to flood it through a portion of the reservoir in which an in situ combustion 
of oil has occurred, or alternatively in which an atomic bomb has been exploded. 
The economic attractiveness of such a scheme will depend upon a balance between 
the extra costs associated with introducing heat into the reservoir and the value 
of the extra recovered oil. 

At normal reservoir conditions an approximate description of the behaviour 
of the water-drive system may be obtained from the solution of the Buckley- 
Leverett frontal advance equation (see Buckley & Leverett 1942) 
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f, is the fractional flow of water, related to laboratory-determined permeability 
functions, Ic,(S) and ko(S), by 

Here S is the water saturation, p the density, q5 the porosity, p the viscosity, 
q the total fluid flux (assumed constant in this analysis), g the acceleration due 
to gravity and a the tilt angle of the one-dimensional system. The subscripts 
w and o refer to water and oil respectively. When CL = 0, the fractional flow function 
has the S-shaped character indicated in figure 1. 
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FIGURE 1. Fractional flow curves. 
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FIGURE 2. Characteristic diagram for simple water flood. 

Equation (1) is a non-linear first-order equation which may be derived from 
Darcy's Law and a material balance condition. It is easily solved by the method 
of characteristics, * the characteristic direction being given by 

while the appropriate characteristic relation is 

dSldt = 0. (4) 

* The characteristic method for solving equation (1) was not used by Buckley & 
Leverett (1942), but has been briefly discussed in this context by Scheidegger (1957). 
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Since S is constant along a characteristic, the characteristics are straight lines. 
The nature of the f, function leads to the intersection of characteristics; the 
intersection may be interpreted physically as the formation of a shock. Methods 
similar to those used in the theory of hyperbolic flow (as described by Courant 
& Friedrichs 1948 or Von Mises 1958) may be used to map the characteristics 
and shock path numerically in a step-by-step process. A typical characteristic 
diagram and saturation profile is illustrated in figures 2 and 3. Consideration 
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FIGURE 3. Saturation profiles for two viscosity ratios. 

of the S-shaped character of the f, function indicates that an equilibrium shock 
strength will rapidly develop, this being determined by the saturation value at 
which the tangent from the origin touches the!, curve (see figure 1). The height 
of the saturation discontinuity determines the efficiency of the displacement 
mechanism. When the oil is highly viscous, the discontinuity is very weak and 
the water moves ahead rapidly, displacing little oil. 

Simplified equations for hot-water displacement 
A linear system having water injected at constant rate and constant tem- 

perature is to be studied. It is assumed that the rock material in any small 
element of the system will be in thermal equilibrium with the two flowing phases, 
which are also assumed to be in thermal equilibrium. (There is a resonable quan- 
tity of experimental evidence to support this assumption.) The mathematical 
model will be further idealized to assume that the fluid-filled porous medium is 
a sufficiently good insulator for fluid flux to become the principal heat transport 
mechanism. These assumptions, combined with the fluid flow approximations, 
are needed to give a hyperbolic system. In  practice, of course, the fluid flow 
equations should include the effects of forces associated with interfacial tensions, 
while the heat equation should include three-dimensional thermal diffusivity 
terms. The system would then be parabolic and shock behaviour would be 
eliminated. However, much valuable information and sufficiently accurate 
solutions may usually be obtained by solving the simpler hyperbolic model. 
The hyperbolic system may be regarded as the 'high-flow-rate ' model. Inclusion 
of the temperature (8) dependence in f,(S, 8) gives a modified fluid flow equation 

af,ax as af ae 
as ax at ae ax 
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Conservation of thermal energy in the system demands that 

(6) 
ae 

R at + cr - + small viscous term = 0. 

The d s  are defined as 
porous rock. Putting 
(6), we obtain 

the thermal capacities per unit volume of water, oil, and 
the equations into dimensionless form and simplifying 

afw(s, n)  as as afw(s, n) _ -  an -+-+ as ax aT an a x - O 7  

an an 
ax aT 

A - + B -  = 0, 

where X = x/L (fractional length), T = qt/L$ (total pore volume flow), 

II = (6'- Omin)/(Omsx - Omin) (reduced temperature), 

and A(S ,n )  =fw 

Equations (7) and (8) have been derived with the assumption that fluid 
and heat capacity are not functions of temperature. In  practice, densities are 
slowly varying functions of temperature, and heat capacities show a somewhat 
larger temperature dependence. Derivation of (8) on the basis of conservation 
of enthalpy gives the same result, but the d s  are now functions of II. When 
density is treated as a function of the dependent variable, the system loses its 
hyperbolic property; consequently this variation has not been included in the 
analysis. The temperature dependence is best chosen on the basis of constant 
mass rather than constant volume, since mass flow rate will tend to be constant 
in regions of thermal gradient. It will be seen that the introduction of this 
functional dependence considerably influences the nature of the characteristic 
diagram, but has little effect on the final quantitative results. 

Shock conditions 
The analysis of non-linear hyperbolic flow often requires the concept of shock 

formation. In  the introduction we noted that the solution of the simple water- 
flood problem led to the formation of the so-called Buckley-Leverett shock. 
Scheidegger (1957) has shown that application of a material balance require- 
ment at the shock front gives for the saturation shock velocity 

d t s  fw+-fw-  
dT - S+-S-' 

where + 's refer to values just ahead of the shock and - 's to values just behind 
the shock. When a discontinuity in temperature occurs, a coincident discon- 
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tinuity in saturation must also take place. Conservation of enthalpy at a simul- 
taneous saturation and temperature-shock will be satisfied if 

The square bracket, [ 1, implies a difference between + and - values. In  dimen- 

where 

H is a normalization constant which may conveniently be taken as the enthalpy 
difference for water between O,, and Om,,. 

We make the physically reasonable hypothesis that the saturation and tem- 
perature discontinuities associated with the temperature shock have the same - 

velocity. Thus from ( Q ) ,  

By combining (11 )  and ( 9 a )  using an algebraic identity of the kind 

a c a-yc 
b - d - b -  yd' 

we obtain 

Equations ( 9 a )  and (12 )  may be thought of as the Rankine-Hugoniot, relations 
for a hot water flood. Equation (12) indicates that a knowledge of S,, 11+ and 
II- are adequate to  determine d te /dT .  The dependent variable X- can be deter- 
mined readily from ( 9 a ) .  Similarly s-, n, and rI- will determine dte/dT and 8,. 
When the thermal capacities are constant, (12) may be simplified to 

Equation (13) depends only on IT, and S+. 

Simple-wave solution of constant-thermal-capacity problem 
The use of the method of characteristics in the solution of simultaneous 

first-order equations has been discussed by Courant & Friedrichs (1948). Using 
their analysis, we see that (7) and (8) are homogeneous and reducible and thus 
may be linearized by means of a hodograph transformation to the form 

(14) 

(15 )  
aT ax 
as as - - A - + B -  = 0. 
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The transformation is valid provided the Jacobian 

and similarly the solution to the image system is a solution of the primary system, 
provided 

For problems in which j = 0, the transformation is not helpful and there is a 
region of the primary solution called a ‘simple wave’. The simple-wave region 
maps into a single characteristic in the hodograph plane, say a I?+ characteristic. 
Along this Characteristic J = 0. We analyse the primary system. The character- 
istic directions for (7) and (8) can be obtained from 

that is 

or 

= 0; 

Along these directions the characteristic relations are given by 

as - a f w  
dT 

dr l  A ax 
dT B-dT 

= 0) 

so that, when dX/dT = A / B  (afW/aII  + 0), 

dn/dT = 0 or = const. 

When axlay = af,/as, 

but 

so that using this result together with (8) we obtain the characteristic relation 

It is of interest to note that (21) is the same form as would have been obtained 
had we treated (7) separately, regarding - (afw/i3n) aII/aX as a source term. 

Equations (18), (19), (20) and (21) are ordinary differential equations which 
may be integrated numerically in a step-by-step process. The intersection of 
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characteristics can be interpreted in a shock theory using (9) and (12). It is 
convenient to assume as initial condition a small linear penetration of S and 11, 
the remaining boundary conditions being specified by 

X = 1.0, II = 1.0 a t  X = 0. ( 2 2 )  

The functional relations determining the characteristic directions, f, and AIB, 
as determined from typical oil and reservoir properties, are illustrated in figures 4 
and 5. The resulting characteristic diagram is illustrated in figure 6 .  Typical 
saturation and temperature profiles are indicated in figure 7 .  
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FIGURE 4. Fractional flow function. 
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FIGURE 5. Thermal-advance coefficient for constant-thermal-capacity problem. 

After a brief initial phase, there are four principal regions in the characteristic 
diagram. In region I, saturations are moving ahead of the temperature bank in 
a reservoir at  ambient temperature, lI = 0. The saturation shock strength and 
velocity are identical to that of a simple Buckley-Leverett solution. Region I1 
is a saturation plateau of constant saturation at  ambient temperature. In  
region 111, the 8-characteristics curve up across straight-line II-characteristics. 
Each II-characteristic has a constant temperature associated with it (as required 
by (20)) and also a constant saturation value. In  region IV, the solution is 
identical to part of a simple water-flood with the temperature at its maximum 
value, II = 1. 

The fact that region I1 is a region of constant state, while region I11 has 
straight-line II-characteristics, is consistent with a simple-wave phenomenon. 
Consequently, we expectj = 0 in region 111, and expect there t o  be a I?+-charac- 
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teristic for which J = 0. By using the conditionj = 0 and referring to ( 7 )  and 
(8), we find that j = 0 is equivalent to 
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FIGURE 6. Characteristic diagram for constant-thermal-capacity problem. 
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FIGURE 7. Typical saturation and temperature profiles for 
constant-thermal-capacity problem. 

which requires dS = 0 along the directions dX/dT  = A/B.  Thus, saturation is 
constant along a II-characteristic in a simple-wave region. Using (23) to eliminate 
a#laT in ( 7 ) )  we obtain 

(24) 
(?& = -%/(---) af, A 

an ax B * 

Equation (24) is an important inner relation for the simple-wave region. Given 
an initial distribution for IT in the simple wave, (24) determines the corresponding 
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constant 8-profile in the wave. Furthermore, the characteristic directions for the 
hodograph equations, (14) and (15), are given by 

and when J = 0 it  can be shown that dT = 0 along this direction; thus (24) also 
gives the I?+-characteristic which maps the simple-wave region in the hodograph 
plane. 

Finally, we show that the IT-characteristics are parallel in the simple-wave 
region : 

and, using (24), together with the definitions of A and B in (S), we find for the 
simple-wave region that 

a (") = o ,  
provided go, g, and gR are not functions of II. 

The simple-wave nature of the solution for constant heat capacity allows a 
convenient technique for obtaining solutions to practical problems. Inasmuch 
as an arbitrary linear penetration was chosen for the initial II-distribution, and 
the fact that this remained almost unchanged after the brief initial phase, we 
can arbitrarily assume a sharp linear distribution for II in the simple wave, 
II = CX+ VVT. The saturation distribution in the wave would then be obtained 
from (24). Therefore, when the initial II-distribution is indefinitely sharp, the 
corresponding #-distribution will also be indefinitely sharp. In  this case there 
is a saturation front propagated in association with a temperature front. The 
velocity, V ,  and S- for the front are determined from 

while S ,  for the front is determined from 

For S > X-, the solution is the Buckley-Leverett type corresponding to S > 8- 
and ll = 1. For S < S,, the solution is the Buckley-Leverett type for S < 8, 
and II = 0. This region and the foot of the temperature front are joined by a 
plateau of constant saturation with value S,. The functional form of 

A(#, n)/B(S,n) and fJS, rl) for 0 < II < 1 

would not be needed in this type of solution. 

= 4X+, O)/B(S+, 0). (28) 

Solution of variable-thermal-capacity problem 
When the temperature dependence is introduced into the thermal capacities, 

there is no longer a simple relationship between the function A/B and f,. In  
consequence, (26) is not fulfilled, and a simple-wave solution with parallel 
II-characteristics is not possible. The modified A/B function is illustrated in 
figure 8. Construction of the characteristic diagram for this case (figures 9 and 10) 
gives converging II -characteristics which are nearly straight lines. The converg- 
ence of the II-characteristics leads to the gradual formation of a tempera- 
ture shock moving with an associated saturation shock. With the particular 
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choice of an initial linear penetration, the shape of the temperature-shock path 
is concave downward. For early T-values, the #-characteristics move into the 
shock from above, thus determining the value of S,. The shock velocity and S- 
for this situation are obtained from (9a) and (12). There are two possible values 
of S- which fulfill the mathematical requirements, the preferred value being 
selected by physical considerations. The shock must be backward-facing because 
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FIGURE 8. Thermal-advance coefficient for variable-theimal-capacity problem. 
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FIGURE 9. Characteristic diagram for variable-thermal-capacity problem. 

#--characteristics are moving more slowly than the shock velocity. We select 
the 8- value which tends to S ,  as the temperature strength tends to zero. At 
a later time the shock velocity decreases to a stage where the calculated S-- 
characteristic becomes parallel to the shock path, and thereafter previous 
8--characteristics re-enter the shock path. At this instant the physical and 
mathematical requirements demand that the shock break into two parts. The 
entry of 8--characteristics from below causes the formation of a forward-facing 
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s ock with S,-characteristics moving ahead at higher velocities than the shock 
velocity. These faster-moving 8,-characteristics lead to the formation of a 
small backward-facing saturation shock moving ahead of the main temperature 
shock. These phenomena are illustrated in figure 11 and 12. 
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FIGURE 10. Typical saturation curves for variable-thermal-capacity problem. 
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FIGURE 11. Partial saturation profiles illustrating formation of double shock. 
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FIGURE 12. Schematic diagram of characteristics in region of double-shock formation. 
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After a brief period, the leading shock advances into the II = 0 region and has 
a slowly changing plateau of saturation behind it in this region. The plateau 
corresponds to the region of constant state in the previous simple-wave problem. 
Eventually the II-characteristics converge to form a stabilized temperature 
shock, a t  which time X in the plateau remains fixed, and the solution henceforth 
behaves similarly to the simple-wave solution. At all times the quantitative 
behaviour of the variable thermal capacity solution is close to that of the simple- 
wave solution, even though the nature of the characteristic diagrams is different. 
It is concluded that the only significant difference between the two solutions is 
that thermal-capacity variation will cause an initial temperature distribution to 
steepen gradually into a shock, whereas the simple-wave nature of the constant- 
capacity case leaves an initial distribution almost unaltered. This conclusion 
depends on the functional dependence chosen for the thermal capacities. 

Solution of decoupled equations 
Much of the present effort in predicting the performance of thermal drive 

processes is dependent upon the assumption that temperature profiles may be 
calculated neglecting saturation variation and the multiphase flow behaviour 
of the system. This approximate temperature behaviour is then used to calculate 
the saturation behaviour. In  the high-flow-rate model, this concept would be 
expressed by using an average saturation value for A/B in (S), thus reducing it 
to an equation in one unknown. The solution of the decoupled equation can easily 
be determined by the method of characteristics. The temperature term, 
- (afw/aII) aII/aX, is then treated as a space-and-time-varying source in the 
solution of (7). The validity of this approach was tested for the variable-thermal- 
capacity problem. The average saturation was chosen as the value associated 
with the tangent to the fw(X, 0*5)-curve. The solution of the decoupled problem 
was found to differ by not more than 1 or 2 yo from the coupled solution for all 
calculated temperatures and saturations. However, solution of a decoupled 
system would not have given the simple-wave solution associated with the 
constant-thermal-capacity problem. 

On the basis of this result it would seem reasonable to continue the decoupling 
philosophy in introducing extra physics into the equations describing a thermal- 
flood process. One simple improvement in this respect would be to express a 
heat-loss term as proportional to the difference between instantaneous and 
ambient temperature. The resulting modification in (8) would cause the II- 
characteristics to become curved. 
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